General Certificate of Education Advanced Subsidiary Examination January 2010

Mathematics

MPC2

Unit Pure Core 2

Monday 11 January 20109.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The diagram shows a sector $O A B$ of a circle with centre O.

The radius of the circle is 15 cm and angle $A O B=1.2$ radians .
(a) (i) Show that the area of the sector is $135 \mathrm{~cm}^{2}$.
(ii) Calculate the length of the arc $A B$.
(b) The point P lies on the radius $O B$ such that $O P=10 \mathrm{~cm}$, as shown in the diagram below.

Calculate the perimeter of the shaded region bounded by $A P, P B$ and the arc $A B$, giving your answer to three significant figures.

2 At the point (x, y) on a curve, where $x>0$, the gradient is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=7 \sqrt{x^{5}}-4
$$

(a) Write $\sqrt{x^{5}}$ in the form x^{k}, where k is a fraction.
(b) Find $\int\left(7 \sqrt{x^{5}}-4\right) \mathrm{d} x$.
(3 marks)
(c) Hence find the equation of the curve, given that the curve passes through the point (1, 3).

3 (a) Find the value of x in each of the following:
(i) $\log _{9} x=0$;
(ii) $\log _{9} x=\frac{1}{2}$.
(1 mark)
(b) Given that

$$
2 \log _{a} n=\log _{a} 18+\log _{a}(n-4)
$$

find the possible values of n.

4 An arithmetic series has first term a and common difference d.
The sum of the first 31 terms of the series is 310 .
(a) Show that $a+15 d=10$.
(b) Given also that the 21st term is twice the 16th term, find the value of d.
(c) The nth term of the series is u_{n}. Given that $\sum_{n=1}^{k} u_{n}=0$, find the value of k. (4 marks)

5 A curve has equation $y=\frac{1}{x^{3}}+48 x$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence find the equation of each of the two tangents to the curve that are parallel to the x-axis.
(c) Find an equation of the normal to the curve at the point $(1,49)$.

6 (a) Sketch the curve with equation $y=2^{x}$, indicating the coordinates of any point where the curve intersects the coordinate axes.
(b) (i) Use the trapezium rule with five ordinates (four strips) to find an approximate value for $\int_{0}^{2} 2^{x} \mathrm{~d} x$, giving your answer to three significant figures. (4 marks)
(ii) State how you could obtain a better approximation to the value of the integral using the trapezium rule.
(c) Describe a geometrical transformation that maps the graph of $y=2^{x}$ onto the graph of $y=2^{x+7}+3$.
(d) The curve $y=2^{x+k}+3$ intersects the y-axis at the point $A(0,8)$.

Show that $k=\log _{m} n$, where m and n are integers.

7 (a) The first four terms of the binomial expansion of $(1+2 x)^{7}$ in ascending powers of x are $1+a x+b x^{2}+c x^{3}$. Find the values of the integers a, b and c.
(b) Hence find the coefficient of x^{3} in the expansion of $\left(1-\frac{1}{2} x\right)^{2}(1+2 x)^{7}$.

8 (a) Solve the equation $\tan \left(x+52^{\circ}\right)=\tan 22^{\circ}$, giving the values of x in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(3 marks)
(b) (i) Show that the equation

$$
3 \tan \theta=\frac{8}{\sin \theta}
$$

can be written as

$$
3 \cos ^{2} \theta+8 \cos \theta-3=0
$$

(3 marks)
(ii) Find the value of $\cos \theta$ that satisfies the equation

$$
\begin{equation*}
3 \cos ^{2} \theta+8 \cos \theta-3=0 \tag{2marks}
\end{equation*}
$$

(iii) Hence solve the equation

$$
3 \tan 2 x=\frac{8}{\sin 2 x}
$$

giving all values of x to the nearest degree in the interval $0^{\circ} \leqslant x \leqslant 180^{\circ}$.
(4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

